Selected publications

View our members’ publications


2025Chatten, A., Grieve, I., Meligoniti, E., Hayward, C. and Pilakouta, N. (2025). Predicting the Effects of Climate Change on the Fertility of Aquatic Animals Using a Meta-Analytic Approach. Ecology Letters, 28: e70054Journal articlehttps://doi.org/10.1111/ele.70054
2024Abhishek Meena, Komal Maggu, Alessio N. De Nardo, Sonja H. Sbilordo, Benjamin Eggs, Rawaa Al Toma Sho & Stefan Lüpold (2024). Life stage-specific effects of heat stress on spermatogenesis and oogenesis in Drosophila melanogaster. Journal of Thermal Biology, 125, 104001Journal articlehttps://doi.org/10.1016/j.jtherbio.2024.104001
2024Grandela, A., Santos, M. A., Antunes, M. A., Matos, M., Rodrigues, L. R.*, and Simões, P.* (2024). Detrimental impact of a heatwave on male reproductive behaviour and fertility. (*co-last authors). Acta Ethologica, 27, 1–11Journal articlehttps://doi.org/10.1007/s10211-023-00431-7
2024Meena, A., De Nardo, A. N., Maggu, K., Sbilordo, S. H., Roy, J., Snook, R. R. and Lüpold, S. (2024). Fertility loss and recovery dynamics after repeated heat stress across life stages in male Drosophila melanogaster: patterns and processes. Royal Society Open Science, 11(10), 241082Journal articlehttps://doi.org/10.1098/rsos.241082
2024Parrett, J., M. Kulczak & N. Szudarek-Trepto (2024) Fertility loss under thermal stress: males have lower fertility limits but no evidence of sex differences in sensitivity. Oikos, e10329Journal articlehttps://doi.org/10.1111/oik.10329
2024Sidhu, K. K., Zafeiri, S., Malcolm C., Caplat, P., Lancaster, L. T., Bocedi, G. and Pilakouta, N. (2024). Heatwaves during early development have long-term consequences for parental care in adulthood. Animal Behaviour, 217, 65-72Journal articlehttps://doi.org/10.1016/j.anbehav.2024.08.002
2024Pilakouta, N., Allan, D., Moore, E. and Russell, A. A. (2024). Chronic and acute thermal stressors have non-additive effects on fertility. Proceedings of the Royal Society B, 291 (2031), rspb20241086Journal articlehttps://doi.org/10.1098/rspb.2024.1086
2024Ratz, T., Chechi, T.S., Dimopoulou, A.-I., Sedlmair, S.D. and Tuni, C. (2024) Heatwaves inflict reproductive but not survival costs to male insects, J Exp Biol, 227 (6): jeb246698Journal article https://doi.org/10.1242/jeb.246698
2024Bretman, A., Fricke, C., Baur, J., Berger, D., Breedveld, M. C., Canal D., B., Drobniak, S., Ellers, J., English, S., Gasparini, C., Iossa, G., Lagisz, M., Nakagawa, S., Noble, D.W. A., Pottier, P., Ramm, S. A., Rowe, M., Dierick, D., Schultner, E., Schou, M., Simões, P., Stockley, P., Vasudeva, R., Weaving, H., Price T. A. R. and Snook, R. R. (2024) Systematic approaches to assessing high-temperature limits to fertility in animals, Journal of Evolutionary Biology, voae021Journal article https://doi.org/10.1093/jeb/voae021
2024Weaving H, Terblanche JS and English S (2024) Heatwaves are detrimental to fertility in the viviparous tsetse fly. Proceedings of the Royal Society B 291, 20232710Journal article https://doi.org/10.1098/rspb.2023.2710
2024van Dijk, S. M., Zizzari, Z. V., Koene, J. M., & Nakadera, Y. (2024). Sublethal heat reduces overall reproductive investment and male allocation in a simultaneously hermaphroditic snail species. R Soc Open Sci, 11(2), 231287.Journal article https://doi.org/10.1098/rsos.231287
2024Dougherty, L.R., Frost, F., Maenpaa, M., Rowe, M., Cole, B.J., Vasudeva, R., Pottier, P., Schultner, E., Macartney, E.L., Lindenbaum, I., Smith, J.L., Carazo, P., Graziano, M., Weaving, H., Domenech, B.C., Berger, D., Meena, A., Bishop, T.R., Noble, D.W.A., Simões, P., Baur, J., Breedveld, M.C., Svensson, E.I., Lancaster, L.T., Ellers, J., De Nardo, A.N., Santos, M.A., Ramm, S.A., Drobniak, S.M., Redana, M., Tuni, C., Pilakouta, N., Zizzari, Z.V., Iossa, G., Lüpold, S., Koppik, M., Early, R., Gasparini, C., Nakagawa, S., Lagisz, M., Bretman, A., Fricke, C., Snook, R.R., Price, T.A.R. (2024). A systematic map of studies testing the relationship between temperature and animal reproduction. Ecological Solutions and Evidence, 5(1): e12303.Journal article https://doi.org/10.1002/2688-8319.12303
2024Baur, J., Zwoinska, M., Koppik, M., Snook, R. R. and Berger, D. (2024). Heat stress reveals a fertility debt owing to postcopulatory sexual selection. Evolution Letters, 8(1), 101–113Journal articlehttps://doi.org/10.1093/evlett/qrad007
2023Santos, M. A., Antunes, M. A., Grandela, A., Quina, A. S., Santos, M., De Matos, M., and Simões P. (2023). Slow and population specific evolutionary response to a warming environment. Scientific Reports, 13(1), 9700Journal articlehttps://doi.org/10.1038/s41598-023-36273-3
2023Santos, M. A.*, Antunes, M. A.*, Grandela, A., Carromeu-Santos, A., Quina, A. S., Santos, M., Matos, M.**, and Simões, P.** (2023). Heat-induced female biased sex ratio during development is not mitigated after prolonged thermal selection. BMC Ecology and Evolution, 23, 64. (*co-first authors; ** co-last authors)Journal articlehttps://doi.org/10.1186/s12862-023-02172-4
2023Santos, M. A., Antunes, M. A., Grandela, A., Carromeu-Santos, A., Quina, A. S., Santos, M., Matos, M., and Simões, P. (2023). Past history shapes evolution of reproductive success in a global warming scenario. Journal of Thermal Biology, 112, 103478Journal articlehttps://doi.org/10.1016/j.jtherbio.2023.103478
2023Santos, M. A., Grandela, A., Antunes, M. A., Quina, A. S., Santos, M., Matos, M., and Simões, P. (2023). Sex and population differences underlie variation in reproductive success in a warming environment. Evolution, 77, 1842–1851Journal articlehttps://doi.org/10.1093/evolut/qpad104
2023Breedveld, M. C., Devigili, A., Borgheresi, O., & Gasparini, C. (2023). Reproducing in hot water: Experimental heatwaves deteriorate multiple reproductive traits in a freshwater ectotherm. Functional Ecology, 37, 989–1004Journal articlehttps://doi.org/10.1111/1365-2435.14279
2023Graziano, M., Solberg, M.F., Glover, K.A., Vasudeva, R., Dyrhovden, L., Murray, D., Immler, S. & Gage, M.J.G. Pre-fertilization gamete thermal environment influences reproductive success, unmasking opposing sex-specific responses in Atlantic salmon (Salmo salar). Royal Society Open Science, 10(12), 231427Journal article https://doi.org/10.1098/rsos.231427
2023Pilakouta, N., Sellers, L., Barratt, R., & Ligonniere, A. (2023). The consequences of heatwaves for animal reproduction are timing-dependent. Functional Ecology, 37, 2425–2433.Journal article https://doi.org/10.1111/1365-2435.14386
2023Mak, K.W., Price, T.A.R. & Dougherty, L.R. (2023). The effect of short-term exposure to high temperatures on male courtship behaviour and mating success in the fruit fly Drosophila virilis. Journal of Thermal Biology, 117: 103701.Journal article https://doi.org/10.1016/j.jtherbio.2023.103701
2023Breedveld, M.C., San-Jose, L.M., Romero-Diaz, C., Roldan, E.R. and Fitze, P.S., 2017. Mate availability affects the trade-off between producing one or multiple annual clutches. Animal behaviour123, pp.43-51.Journal article https://doi.org/10.1111/1365-2435.14279
2021Santos, M. A., Carromeu-Santos, A., Quina, A. S., Santos, M., Matos, M., and Simões, P. (2021). No evidence for short‐term evolutionary response to a warming environment in DrosophilaEvolution, 75(11), 2816–2829Journal articlehttps://doi.org/10.1111/evo.14366
2021Santos, M. A., Carromeu-Santos, A., Quina, A. S., Santos, M., Matos, M., and Simões, P. (2021). High developmental temperature leads to low reproduction despite adult temperature. Journal of Thermal Biology, 95, 102794Journal articlehttps://doi.org/10.1016/j.jtherbio.2020.102794
2019Vasudeva, R., Sutter, A., Sales, K., Dickinson, M.E., Lumley, A.J. and Gage, M.J. (2019). Adaptive thermal plasticity enhances sperm and egg performance in a model insect. Elife8, p.e49452.Journal article https://doi.org/10.7554/eLife.49452
2019Iossa, G. (2019). Sex-specific differences in thermal fertility limits. Trends in Ecology and Evolution, 34(6) 490-492.Journal articlehttps://doi.org/10.1016/j.tree.2019.02.016
2019Walsh, B.S., Parratt, S.R., Hoffmann, A.A., Atkinson, D., Snook, R.R., Bretman, A. and Price, T.A. (2019). The impact of climate change on fertility. Trends in Ecology & Evolution, 34(3), pp.249-259.Journal article https://doi.org/10.1016/j.tree.2018.12.002
2018Sales, K., Vasudeva, R., Dickinson, M.E., Godwin, J.L., Lumley, A.J., Michalczyk, Ł., Hebberecht, L., Thomas, P., Franco, A. and Gage, M.J. (2018). Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nature Communications9(1), p.4771.Journal article https://doi.org/10.1038/s41467-018-07273-z
2018Hurley, L.L., McDiarmid, C.S., Friesen, C.R., Griffith, S.C. and Rowe, M. (2018). Experimental heatwaves negatively impact sperm quality in the zebra finch. Proceedings of the Royal Society B: Biological Sciences285(1871), p.20172547.Journal article http://dx.doi.org/10.1098/rspb.2017.2547
2017Porcelli, D., Gaston, K.J., Butlin, R.K. and Snook, R.R. (2017). Local adaptation of reproductive performance during thermal stress. Journal of Evolutionary Biology30(2), pp.422-429.Journal article https//doi.org/10.1111/jeb.13018