Selected publications
View our members’ publications
2025 | Chatten, A., Grieve, I., Meligoniti, E., Hayward, C. and Pilakouta, N. (2025). Predicting the Effects of Climate Change on the Fertility of Aquatic Animals Using a Meta-Analytic Approach. Ecology Letters, 28: e70054 | Journal article | https://doi.org/10.1111/ele.70054 |
2024 | Abhishek Meena, Komal Maggu, Alessio N. De Nardo, Sonja H. Sbilordo, Benjamin Eggs, Rawaa Al Toma Sho & Stefan Lüpold (2024). Life stage-specific effects of heat stress on spermatogenesis and oogenesis in Drosophila melanogaster. Journal of Thermal Biology, 125, 104001 | Journal article | https://doi.org/10.1016/j.jtherbio.2024.104001 |
2024 | Grandela, A., Santos, M. A., Antunes, M. A., Matos, M., Rodrigues, L. R.*, and Simões, P.* (2024). Detrimental impact of a heatwave on male reproductive behaviour and fertility. (*co-last authors). Acta Ethologica, 27, 1–11 | Journal article | https://doi.org/10.1007/s10211-023-00431-7 |
2024 | Meena, A., De Nardo, A. N., Maggu, K., Sbilordo, S. H., Roy, J., Snook, R. R. and Lüpold, S. (2024). Fertility loss and recovery dynamics after repeated heat stress across life stages in male Drosophila melanogaster: patterns and processes. Royal Society Open Science, 11(10), 241082 | Journal article | https://doi.org/10.1098/rsos.241082 |
2024 | Parrett, J., M. Kulczak & N. Szudarek-Trepto (2024) Fertility loss under thermal stress: males have lower fertility limits but no evidence of sex differences in sensitivity. Oikos, e10329 | Journal article | https://doi.org/10.1111/oik.10329 |
2024 | Sidhu, K. K., Zafeiri, S., Malcolm C., Caplat, P., Lancaster, L. T., Bocedi, G. and Pilakouta, N. (2024). Heatwaves during early development have long-term consequences for parental care in adulthood. Animal Behaviour, 217, 65-72 | Journal article | https://doi.org/10.1016/j.anbehav.2024.08.002 |
2024 | Pilakouta, N., Allan, D., Moore, E. and Russell, A. A. (2024). Chronic and acute thermal stressors have non-additive effects on fertility. Proceedings of the Royal Society B, 291 (2031), rspb20241086 | Journal article | https://doi.org/10.1098/rspb.2024.1086 |
2024 | Ratz, T., Chechi, T.S., Dimopoulou, A.-I., Sedlmair, S.D. and Tuni, C. (2024) Heatwaves inflict reproductive but not survival costs to male insects, J Exp Biol, 227 (6): jeb246698 | Journal article | https://doi.org/10.1242/jeb.246698 |
2024 | Bretman, A., Fricke, C., Baur, J., Berger, D., Breedveld, M. C., Canal D., B., Drobniak, S., Ellers, J., English, S., Gasparini, C., Iossa, G., Lagisz, M., Nakagawa, S., Noble, D.W. A., Pottier, P., Ramm, S. A., Rowe, M., Dierick, D., Schultner, E., Schou, M., Simões, P., Stockley, P., Vasudeva, R., Weaving, H., Price T. A. R. and Snook, R. R. (2024) Systematic approaches to assessing high-temperature limits to fertility in animals, Journal of Evolutionary Biology, voae021 | Journal article | https://doi.org/10.1093/jeb/voae021 |
2024 | Weaving H, Terblanche JS and English S (2024) Heatwaves are detrimental to fertility in the viviparous tsetse fly. Proceedings of the Royal Society B 291, 20232710 | Journal article | https://doi.org/10.1098/rspb.2023.2710 |
2024 | van Dijk, S. M., Zizzari, Z. V., Koene, J. M., & Nakadera, Y. (2024). Sublethal heat reduces overall reproductive investment and male allocation in a simultaneously hermaphroditic snail species. R Soc Open Sci, 11(2), 231287. | Journal article | https://doi.org/10.1098/rsos.231287 |
2024 | Dougherty, L.R., Frost, F., Maenpaa, M., Rowe, M., Cole, B.J., Vasudeva, R., Pottier, P., Schultner, E., Macartney, E.L., Lindenbaum, I., Smith, J.L., Carazo, P., Graziano, M., Weaving, H., Domenech, B.C., Berger, D., Meena, A., Bishop, T.R., Noble, D.W.A., Simões, P., Baur, J., Breedveld, M.C., Svensson, E.I., Lancaster, L.T., Ellers, J., De Nardo, A.N., Santos, M.A., Ramm, S.A., Drobniak, S.M., Redana, M., Tuni, C., Pilakouta, N., Zizzari, Z.V., Iossa, G., Lüpold, S., Koppik, M., Early, R., Gasparini, C., Nakagawa, S., Lagisz, M., Bretman, A., Fricke, C., Snook, R.R., Price, T.A.R. (2024). A systematic map of studies testing the relationship between temperature and animal reproduction. Ecological Solutions and Evidence, 5(1): e12303. | Journal article | https://doi.org/10.1002/2688-8319.12303 |
2024 | Baur, J., Zwoinska, M., Koppik, M., Snook, R. R. and Berger, D. (2024). Heat stress reveals a fertility debt owing to postcopulatory sexual selection. Evolution Letters, 8(1), 101–113 | Journal article | https://doi.org/10.1093/evlett/qrad007 |
2023 | Santos, M. A., Antunes, M. A., Grandela, A., Quina, A. S., Santos, M., De Matos, M., and Simões P. (2023). Slow and population specific evolutionary response to a warming environment. Scientific Reports, 13(1), 9700 | Journal article | https://doi.org/10.1038/s41598-023-36273-3 |
2023 | Santos, M. A.*, Antunes, M. A.*, Grandela, A., Carromeu-Santos, A., Quina, A. S., Santos, M., Matos, M.**, and Simões, P.** (2023). Heat-induced female biased sex ratio during development is not mitigated after prolonged thermal selection. BMC Ecology and Evolution, 23, 64. (*co-first authors; ** co-last authors) | Journal article | https://doi.org/10.1186/s12862-023-02172-4 |
2023 | Santos, M. A., Antunes, M. A., Grandela, A., Carromeu-Santos, A., Quina, A. S., Santos, M., Matos, M., and Simões, P. (2023). Past history shapes evolution of reproductive success in a global warming scenario. Journal of Thermal Biology, 112, 103478 | Journal article | https://doi.org/10.1016/j.jtherbio.2023.103478 |
2023 | Santos, M. A., Grandela, A., Antunes, M. A., Quina, A. S., Santos, M., Matos, M., and Simões, P. (2023). Sex and population differences underlie variation in reproductive success in a warming environment. Evolution, 77, 1842–1851 | Journal article | https://doi.org/10.1093/evolut/qpad104 |
2023 | Breedveld, M. C., Devigili, A., Borgheresi, O., & Gasparini, C. (2023). Reproducing in hot water: Experimental heatwaves deteriorate multiple reproductive traits in a freshwater ectotherm. Functional Ecology, 37, 989–1004 | Journal article | https://doi.org/10.1111/1365-2435.14279 |
2023 | Graziano, M., Solberg, M.F., Glover, K.A., Vasudeva, R., Dyrhovden, L., Murray, D., Immler, S. & Gage, M.J.G. Pre-fertilization gamete thermal environment influences reproductive success, unmasking opposing sex-specific responses in Atlantic salmon (Salmo salar). Royal Society Open Science, 10(12), 231427 | Journal article | https://doi.org/10.1098/rsos.231427 |
2023 | Pilakouta, N., Sellers, L., Barratt, R., & Ligonniere, A. (2023). The consequences of heatwaves for animal reproduction are timing-dependent. Functional Ecology, 37, 2425–2433. | Journal article | https://doi.org/10.1111/1365-2435.14386 |
2023 | Mak, K.W., Price, T.A.R. & Dougherty, L.R. (2023). The effect of short-term exposure to high temperatures on male courtship behaviour and mating success in the fruit fly Drosophila virilis. Journal of Thermal Biology, 117: 103701. | Journal article | https://doi.org/10.1016/j.jtherbio.2023.103701 |
2023 | Breedveld, M.C., San-Jose, L.M., Romero-Diaz, C., Roldan, E.R. and Fitze, P.S., 2017. Mate availability affects the trade-off between producing one or multiple annual clutches. Animal behaviour, 123, pp.43-51. | Journal article | https://doi.org/10.1111/1365-2435.14279 |
2021 | Santos, M. A., Carromeu-Santos, A., Quina, A. S., Santos, M., Matos, M., and Simões, P. (2021). No evidence for short‐term evolutionary response to a warming environment in Drosophila. Evolution, 75(11), 2816–2829 | Journal article | https://doi.org/10.1111/evo.14366 |
2021 | Santos, M. A., Carromeu-Santos, A., Quina, A. S., Santos, M., Matos, M., and Simões, P. (2021). High developmental temperature leads to low reproduction despite adult temperature. Journal of Thermal Biology, 95, 102794 | Journal article | https://doi.org/10.1016/j.jtherbio.2020.102794 |
2019 | Vasudeva, R., Sutter, A., Sales, K., Dickinson, M.E., Lumley, A.J. and Gage, M.J. (2019). Adaptive thermal plasticity enhances sperm and egg performance in a model insect. Elife, 8, p.e49452. | Journal article | https://doi.org/10.7554/eLife.49452 |
2019 | Iossa, G. (2019). Sex-specific differences in thermal fertility limits. Trends in Ecology and Evolution, 34(6) 490-492. | Journal article | https://doi.org/10.1016/j.tree.2019.02.016 |
2019 | Walsh, B.S., Parratt, S.R., Hoffmann, A.A., Atkinson, D., Snook, R.R., Bretman, A. and Price, T.A. (2019). The impact of climate change on fertility. Trends in Ecology & Evolution, 34(3), pp.249-259. | Journal article | https://doi.org/10.1016/j.tree.2018.12.002 |
2018 | Sales, K., Vasudeva, R., Dickinson, M.E., Godwin, J.L., Lumley, A.J., Michalczyk, Ł., Hebberecht, L., Thomas, P., Franco, A. and Gage, M.J. (2018). Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nature Communications, 9(1), p.4771. | Journal article | https://doi.org/10.1038/s41467-018-07273-z |
2018 | Hurley, L.L., McDiarmid, C.S., Friesen, C.R., Griffith, S.C. and Rowe, M. (2018). Experimental heatwaves negatively impact sperm quality in the zebra finch. Proceedings of the Royal Society B: Biological Sciences, 285(1871), p.20172547. | Journal article | http://dx.doi.org/10.1098/rspb.2017.2547 |
2017 | Porcelli, D., Gaston, K.J., Butlin, R.K. and Snook, R.R. (2017). Local adaptation of reproductive performance during thermal stress. Journal of Evolutionary Biology, 30(2), pp.422-429. | Journal article | https//doi.org/10.1111/jeb.13018 |